Problems involving the fractional <i>g</i>-Laplacian with lack of compactness

نویسندگان

چکیده

In this paper we prove compact embedding of a subspace the fractional Orlicz-Sobolev space $W^{s, G}\left(\mathbb{R}^{N}\right)$ consisting radial functions, our target spaces are Orlicz type. Also, Lions and Lieb type results for $W^{s,G}\left(\mathbb{R}^{N}\right)$ that works together in particular way to get sequence whose weak limit is nontrivial. As an application, study existence solutions Quasilinear elliptic problems whole $\mathbb{R}^N$ involving $g-$Laplacian operator, where conjugated function $\widetilde{G}$ $G$ doesn't satisfy $\Delta_2$-condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN

Under suitable assumptions on the potential of the nonlinearity, we study the existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.

متن کامل

Mountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian

where ⊂Rn (n≥ 2) is a bounded smooth domain, s ∈ (0, 1), (– )s denotes the fractional Laplacian, λ is a real parameter, the nonlinear term f satisfies superlinear and subcritical growth conditions at zero and at infinity. When λ≤ 0, we prove the existence of a positive solution, a negative solution and a sign-changing solution by combing minimax method with invariant sets of descending flow. Wh...

متن کامل

THE OPTIMIZATION OF EIGENVALUE PROBLEMS INVOLVING THE p-LAPLACIAN

Given a bounded domain Ω ⊂ R and numbers p > 1, α ≥ 0, A ∈ [0, |Ω|], consider the following optimization problem: find a subset D ⊂ Ω, of measure A, for which the first eigenvalue of the operator −∆p + αχD φp with the Dirichlet boundary condition is as small as possible. We prove the existence of optimal solutions and study their qualitative properties. We also obtain the radial symmetry of opt...

متن کامل

Functional fractional boundary value problems with singular ϕ-Laplacian

This paper discusses the existence of solutions of the fractional differential equations D(φ(Du)) = Fu, D(φ(Du)) = f(t, u, Du) satisfying the boundary conditions u(0) = A(u), u(T ) = B(u). Here μ, α ∈ (0, 1], ν ∈ (0, α], D is the Caputo fractional derivative, φ ∈ C(−a, a) (a > 0), F is a continuous operator, A,B are bounded and continuous functionals and f ∈ C([0, T ] × R). The existence result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2023

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0105895